• Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field

    分类: 力学 >> 固体力学 提交时间: 2023-09-08

    摘要: Phase field model (PFM) is an efficient fracture modeling method and has high potential for hydraulic fracturing (HF). However, the current PFMs in HF do not consider well the effect of in-situ stress field and the numerical examples of porous media with stress boundary conditions were rarely presented. The main reason is that if the remote stress is applied on the boundaries of the calculation domain, there will be relatively large deformation induced on these stress boundaries, which is not consistent with the engineering observations. To eliminate this limitation, this paper proposes a new phase field method to describe quasi-static hydraulic fracture propagation in porous media subjected to stress boundary conditions, and the new method is more in line with engineering practice. A new energy functional, which considers the effect of initial in-situ stress field, is established and then it is used to achieve the governing equations for the displacement and phase fields through the variational approach. Biot poroelasticity theory is used to couple the fluid pressure field and the displacement field while the phase field is used for determining the fluid properties from the intact domain to the fully broken domain. In addition, we present several 2D and 3D examples to show the effects of in-situ stress on hydraulic fracture propagation. The numerical examples indicate that under stress boundary condition our approach obtains correct displacement distribution and it is capable of capturing complex hydraulic fracture growth patterns.

  • Phase field modeling and computer implementation: A review

    分类: 工程与技术科学 >> 工程与技术科学其他学科 提交时间: 2023-09-05

    摘要: This paper presents an overview of the theories and computer implementation aspects of phase field models (PFM) of fracture. The advantage of PFM over discontinuous approaches to fracture is that PFM can elegantly simulate complicated fracture processes including fracture initiation, propagation, coalescence, and branching by using only a scalar field, the phase field. In addition, fracture is a natural outcome of the simulation and obtained through the solution of an additional differential equation related to the phase field. No extra fracture criteria are needed and an explicit representation of a crack surface as well as complex track crack procedures are avoided in PFM for fracture, which in turn dramatically facilitates the implementation. The PFM is thermodynamically consistent and can be easily extended to multi-physics problem by 'changing' the energy functional accordingly. Besides an overview of different PFMs, we also present comparative numerical benchmark examples to show the capability of PFMs.